In parallel circuits, the total resistance of a circuit is determined by using the formula $\frac{1}{R_{\mathrm{T}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$, where R_{T} is the total resistance, R_{1} is the resistance of one branch of the parallel circuit, and R_{2} is the resistance of the other branch of the parallel circuit.

In a particular parallel circuit, one branch has 5Ω more resistance than the other. This can be modelled by the equation

$$
\frac{1}{R_{\mathrm{T}}}=\frac{1}{x}+\frac{1}{x+5}
$$

where x is the resistance of one branch of the parallel circuit, in ohms.
11. If the total resistance of this circuit, R_{T}, is 6Ω, then the resistance of the two branches of the circuit are
A. 3Ω and 3Ω
B. 3Ω and 8Ω
C. 5Ω and 10Ω
*D. 10Ω and 15Ω
12. Determine the solution to each equation.
a. $\frac{5 x-1}{4 x+11}=\frac{3}{4}$
b. $\frac{3}{x}+\frac{5}{3}=10$
c. $\frac{3 x}{x-1}-\frac{4}{x}=3$

SE
d. $\frac{2 x}{x+3}+\frac{x}{x-3}=\frac{18}{x^{2}-9}$

Possible Solutions:

a. $\quad \frac{5 x-1}{4 x+11}=\frac{3}{4}$ $4(5 x-1)=3(4 x+11)$
$20 x-4=12 x+33$
$8 x=37$
$x=\frac{37}{8}$
b. $\frac{3}{x}+\frac{5}{3}=10$

$$
\begin{aligned}
9+5 x & =30 x \\
9 & =25 x \\
x & =\frac{9}{25}
\end{aligned}
$$

c. $\quad \frac{3 x}{x-1}-\frac{4}{x}=3$

$$
\begin{aligned}
3 x(x)-4(x-1) & =3 x(x-1) \\
3 x^{2}-4 x+4 & =3 x^{2}-3 x \\
-x & =-4 \\
x & =4
\end{aligned}
$$

d. $\quad \frac{2 x}{x+3}+\frac{x}{x-3}=\frac{18}{x^{2}-9}$

$$
\begin{aligned}
2 x(x-3)+x(x+3) & =18 \\
2 x^{2}-6 x+x^{2}+3 x & =18 \\
3 x^{2}-3 x-18 & =0 \\
x^{2}-x-6 & =0 \\
(x-3)(x+2) & =0 \\
x=3, & x=-2
\end{aligned}
$$

However, x can not equal 3 because it makes one of the denominators in the rational equation equal to 0 . Since $x=3$ is rejected, the only solution is $x=-2$.

Use the following information to answer question 13.
The dimensions of a rectangle are represented by rational expressions, where $x>1$, as shown in the diagram below.

$\boldsymbol{S} \boldsymbol{E}$ 13. If the area of the rectangle is $16 \mathrm{~m}^{2}$, determine the dimensions of the rectangle to the nearest centimetre.

Possible Solution:

$$
\begin{aligned}
\frac{4 x}{x-1} \cdot \frac{x+4}{x+1} & =16 \\
4 x^{2}+16 x & =16 x^{2}-16 \\
0 & =12 x^{2}-16 x-16 \\
0 & =4\left(3 x^{2}-4 x-4\right) \\
0 & =4(3 x+2)(x-2) \\
x & =\frac{-2}{3}, 2
\end{aligned}
$$

Since $x>1$, the solution to the equation is $x=2$.
The length of the rectangle is $\frac{4 \cdot 2}{2-1}=8 \mathrm{~cm}$.
The width of the rectangle is $\frac{2+4}{2+1}=2 \mathrm{~cm}$.

Use the following information to answer question 14.
A student solved a rational equation using the steps shown below.

$$
\frac{x}{x+1}-\frac{2}{x-1}=2
$$

Step $1 x(x-1)-2(x+1)=2$

Step $2 \quad x^{2}-x-2 x-2=2$

Step $3 \quad x^{2}-3 x-4=0$

Step $4(x-4)(x+1)=0$

Step $5 \quad x=-1,4$
14. a. Identify the errors made in the steps shown above.

Possible Solution:

Step 1: The student did not multiply the right-hand side of the equation by the common denominator.

Steps 2, 3, and 4: The student has carried the error from Step 1 through. (Note: If there had not been an error in Step 1, these steps would be correct.)

Step 5: Again, the student has carried the error from Step 1 through. However, the student has also made an error by not rejecting the extraneous solution of $x=-1$.

SE b. Make the corrections necessary to obtain the solution to the equation.

Possible Solution:

Step $1 x(x-1)-2(x+1)=2(x+1)(x-1)$
Step $2 x^{2}-x-2 x-2=2 x^{2}-2$
Step $3 x^{2}+3 x=0$
Step $4 x(x+3)=0$
Step $5 x=-3,0$

Use the following information to answer question 15.

Elliott Nicholls currently holds the world record for the fastest text messaging while blindfolded. He was able to text 160 characters in a time that was 40 seconds less than the previous world record holder's time. Elliott's average rate of texting was 1.6 characters/second faster than the previous world record holder's average rate of texting. The chart below summarizes this information.

	Number of Characters	Time Taken (s)	Average Rate of Texting (characters/s)
Previous record holder	160	x	$\frac{160}{x}$
Elliott	160	$x-40$	$\frac{160}{x-40}$

$\boldsymbol{S E}$ 15. a. Write an equation that models the relationship between the average rates of texting for Elliott and the previous world record holder.

Possible Solution:

$\frac{160}{x-40}-\frac{160}{x}=1.6$
b. Describe the restrictions on the value of x in this context.

Possible Solution:

The value of x represents the time required to text 160 characters. Since Elliot beat the previous world record holder's time, x, by 40 s , the stated solution for x must be a positive value greater than 40 s .
c. The equation can be simplified to obtain $1.6 x^{2}-64 x-6400=0$. Solve this equation. Express your solution to the nearest tenth of a second.

Possible Solution:

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{64 \pm \sqrt{(-64)^{2}-4(1.6)(-6400)}}{2(1.6)} \\
& x=\frac{64 \pm \sqrt{45056}}{3.2} \\
& x \approx 86.3, x \approx-46.3
\end{aligned}
$$

