PART A:

1. The inflection point for the graph $\mathrm{y}=\mathrm{f}(\mathrm{x})$ always occurs where
A. the graph of f changes from concave up to concave down (or vice versa)
B. the first derivative is zero
C. the second derivative is positive
D. the second derivative is negative
2. If $y=\frac{1}{\sqrt{1+x}}$ then $\frac{d^{2} y}{d x^{2}}$ is
A. $\frac{-1}{4 \sqrt{(1+x)^{3}}}$
B. $\frac{3}{4 \sqrt{(1+x)^{5}}}$
C. $\frac{-1}{2 \sqrt{(1+x)^{3}}}$
D. $\frac{1}{4 \sqrt{(1+x)^{3}}}$
3. If $y^{3}-a^{2}(x-y)=0, \frac{d y}{d x}$ is
A. $\frac{a^{2}}{3 y^{2}-a^{2}}$
B. $\frac{a^{2}}{3 y^{2}+a^{2}}$
C. $\frac{a^{2}}{3 y^{2}+y a^{2}}$
D. $\frac{a^{2}}{3 y^{2}-y a^{2}}$
4. The derivative of $y=\frac{x-1}{x(x+1)}$ is
A. $\frac{-x^{2}-1}{\left(x^{2}+x\right)^{2}}$
B. $\frac{x^{2}-1}{\left(x^{2}+x\right)^{2}}$
C. $\frac{-x^{2}+2 x+1}{\left(x^{2}+x\right)^{2}}$
D. $\frac{-x^{2}-2 x+1}{\left(x^{2}+x\right)^{2}}$
5. If the velocity v, in metres per second, of an arrow fired from a bow is given by $v=\frac{300 s}{4-2 s}$, where s is the distance traveled by the arrow, then the acceleration in terms of the distance s is given by
A. $\frac{1200(1-s)}{(4-2 s)^{2}}$
C. $\frac{(300)^{2} 4 s}{(4-2 s)^{3}}$
B. $\frac{1200\left(4 s-4 s^{2}\right)}{(4-2 s)^{2}}$
D. none of these
6. The $\lim _{t \rightarrow \infty}\left[\frac{2 t^{2}-2 t+3}{2 t^{2}+5 t-3}\right]$ is equal to
A. 0
B. -1
C. 1
D. $\frac{1}{2}$
7. The $\lim _{h \rightarrow 1} \frac{h^{2}+3 h-4}{h-1}$
A. 0
C. 5
B. -3
D. undefined
8. The equation of the tangent to the circle defined by, $x^{2}+y^{2}=25$, at the point $(3,4)$ is
A. $3 x-4 y-25=0$
B. $3 x+4 y-25=0$
C. $3 x+4 y+25=0$
D. $3 x-4 y+25=0$
9. If $f(x)=x^{2}$, then the geometric interpretation of $\frac{f(2+a)-f(2)}{a}, a \neq 0$ is the
A. slope of the secant through the points where $x=2$ and $x=2+a$
B. slope of the tangent through the points where $x=2$ and $x=a$
C. derivative of y with respect to x
D. equation of the tangent line through the point where $x=2$
10. If $y=u^{2}-1$ and $x=u^{2}+1$, the derivative of y with respect to x is
A. $\frac{-x}{\sqrt{x-1}}$
B. $4 u^{2}$
C. $\frac{x}{x-1}$
D. 1
11. If $y=x^{3}-3 p x+q$ where p and q are constant and $p>0$ then the value(s) of the function at the stationary point(s) will be
A. maximum only at $x=\sqrt{p}$
B. maximum at $x=-\sqrt{p}$ and minimum at $x=\sqrt{p}$
C. maximum at $x=\sqrt{p}$ and minimum at $x=-\sqrt{p}$
D. nonexistent
12. Given $f(x)=x^{2}$, then $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ is
A. undefined
C. x
B. 0
D. $2 x$
13. Find two natural numbers whose sum is 48 such that the product of the square of one of the numbers times the other number is a maximum.
A. 24 and 24
B. 8 and 40
C. 28 and 20
D. 32 and 16
14. A cylindrical tank has a radius of k feet. It is being filled at the rate of π cubic feet per minute. How fast is the surface rising in feet per minute?
A. πk
B. $(\pi k)^{2}$
C. $\frac{\pi}{k^{2}}$
D. $\frac{1}{k^{2}}$
15. The hypotenuse of a right isosceles triangle is increasing at 2 cm per minute. The rate of change $\left(\mathrm{cm}^{2} / \mathrm{min}\right)$ of the area when the hypotenuse is 8 cm is
A. 8
B. 10
C. 12
D. 14
16. A spherical balloon is inflated with gas at the rate of $100 \mathrm{dm}^{3} / \mathrm{min}$. Assuming that the gas pressure remains constant then the rate, in $d m$ per minute, at which the radius of the balloon is increasing at the instant the radius of the balloon is 3 dm is
A. $\frac{25}{9 \pi}$
B. $\frac{9 \pi}{25}$
C. 25π
D. 9π
17. The product of two positive numbers is 16 . If the sum of one number and the square of the other is a minimum, then one of the number is
A. 2
B. 4
C. 6
D. 16
18. The greatest amount by which a number can exceed it square is
A. $\frac{1}{4}$
B. $\frac{1}{2}$
C. $\frac{3}{4}$
D. 1
19. If $y=F(u)$ where $u=f(x)$ then the result $\left(\frac{d y}{d x}\right)=\frac{d y}{d u} \bullet \frac{d u}{d x}$ is best described by
A. chain rule for derivatives
B. composite function derivatives
C. product law for derivatives
D. quotient law for derivatives
20. The derivative of $\frac{x^{3}-7}{x^{2}+4}$ is
A. $\frac{5 x^{4}+12 x^{2}-14 x}{\left(x^{2}+4\right)^{2}}$
C. $\frac{-x^{4}+12 x^{2}-14 x}{\left(x^{2}+4\right)^{2}}$
B. $\frac{x^{4}+12 x^{2}+14 x}{\left(x^{2}+4\right)^{2}}$
D. none of these
21. For $x^{2} y-3 y^{2}=7, \frac{d y}{d x}$ is
A. $\frac{6 y-x^{2}}{2 x y}$
B. $\frac{7-2 x y}{x^{2}-6 y}$
C. $\frac{-2 x y}{x^{2}-6 y}$
D. $\frac{7-6 y-x^{2}}{2 x y}$
22. The intervals in which the function defined by $y=x^{2}-\frac{1}{2} x^{4}$ is decreasing is
A. $0<x<1$ or $x<-1$
B. $x<0$ or $x>1$
C. $\quad x>0$ or $x<-1$
D. $-1<x<0$ or $x>1$
23. If a rocket travels $t^{3} \mathrm{~m}$ the first t seconds after take off, then its velocity in $\mathrm{m} / \mathrm{sec}$ when it reaches, 1000 m is
A. 1000
B. 500
C. 300
D. 100
24. If the height of a particle at any time t is given by $h=t^{3}+4 t^{2}$ then the acceleration is given by
A. $6 t+8$
B. $\frac{1}{4} t^{4}+\frac{4}{3} t^{3}$
C. $3 t^{2}+8 t$
D. $32 t$
25. If the sum of an infinite geometric series is 128 and the first term is 16 , the common ratio is
A. $\frac{1}{8}$
B. $\frac{7}{8}$
C. $\frac{8}{9}$
D. $\frac{9}{8}$
26. $\lim _{x \rightarrow 1} \frac{2 x^{2}-6 x+4}{x^{2}-1}$ is equal to
A. 2
B. 1
C. 0
D. -1
27. The slope of the secant of the graph of $y=4 x-x^{3}$ through the points where $x=0$ and $x=1$ is
A. 1
B. 3
C. $\frac{1}{3}$
D. -3
28. A car is driven for 3 hours at $45 \mathrm{~km} / \mathrm{h}$ and then for 5 hours at $65 \mathrm{~km} / \mathrm{h}$. It's average velocity in km / h over the total distance is
A. 55
B. $\quad 57.7$
C. 57
D. 60
29. If $S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$, the sum of the infinite geometric series $3+1=\frac{1}{3}+\frac{1}{9}+\ldots$. is
A. 5
B. $\frac{9}{2}$
C. $\frac{40}{9}$
D. ∞
30. The equation of the tangent to the curve of $y=2 x^{2}+3 x-5$ at the point where $x=-1$ is
A. $y=4 x+3$
B. $y=-x-7$
C. $y=\frac{3}{4} x-\frac{27}{4}$
D. $y=2 x-2$
31. A point where the graph $y=x^{3}-4 x^{2}+4 x-3$ has zero is
A. $(2,-3)$
B. $(2,0)$
C. $(-3,2)$
D. $\quad(0,-3)$
32. The maximum value of the position given by $s=3-9 t+6 t^{2}-t^{3}$ when $t \geq 2$ is
A. -1
B. 6
C. 1
D. 3
33. $\lim _{x \rightarrow 0}\left[\frac{3 x^{3}-2 x^{2}+5 x}{x^{2}-x}\right]$ is
A. 6
B. -5
C. 0
D. ∞
34. The derivative with respect to x of $y=x \sqrt{1-x^{2}}$ is
A. $\frac{1}{2} x\left(1-x^{2}\right)^{\frac{-1}{2}}+\left(1-x^{2}\right)^{\frac{1}{2}}$
B. $-x^{2}\left(1-x^{2}\right)^{\frac{-1}{2}}+\left(1-x^{2}\right)^{\frac{1}{2}}$
C. $-x\left(1-x^{2}\right)^{\frac{-1}{2}}$
D. $x-x\left(1-x^{2}\right)^{\frac{3}{2}}$
35. The derivative of y with respect to x for a function determined by $2 x^{2}+3 x y-y^{2}=20$ is
A. $\frac{-(4 x+3 y)}{(3 x-2 y)}$
B. $\frac{4 x+3 y}{3 x-2 y}$
C. $4 x+3-2 y$
D. $-7 x-y$
36. An equation of a tangent to the graph of $y=3 x+\frac{1}{x}$ which is parallel to the graph of $y=-x+6$ is
A. $y=3-\frac{1}{x^{2}}$
B. $y=-x+7 \sqrt{\frac{1}{3}}$
C. $y=-x+4$
D. $y=x+4$
37. A local maximum value of $y=x^{3}+3+\frac{3}{x}$ is
A. 7
B. 3
C. -1
D. 1
38. A rectangular field is to be enclosed by a fence and divided into two smaller plots by a fence parallel to one of the sides. The dimensions in feet of the largest such field if 1200 feet of fence is available is
A. 150×350
B. 200×600
C. 300×300
D. 200×300

39 A point of inflection on the graph of $y=2 x^{\frac{1}{3}}+x^{\frac{4}{3}}$ is
A. $(0,0)$
C. $(1,3)$
B. $(8,20)$
D. there is no point of inflection
40. The equation of this graph is
A. $y=\frac{x^{2}}{x+2}$
B. $y=\frac{x^{2}}{(x+2)^{2}}$
C. $y=\frac{x}{x^{2}-4}$
D. $y=\frac{x}{x+2}+x$

41. A cube is expanding in such a way that its edge is changing at a rate of $5 \mathrm{~cm} / \mathrm{s}$. When its edge is 4 cm long, the rate of change of its volume in $\mathrm{cm}^{3} / \mathrm{s}$ is
A. 192
B. 48
C. 375
D. 240

Part B

1. The general solution of $\frac{d y}{d x}=x^{n}, n \neq-1$, is
A. $y=n x^{n-1}$
B. $y=\frac{x^{n+1}}{n+1}+c$
C. $y=\frac{x^{n+1}}{n+1}$
D. $y=x^{n+1}+c$
2. Given the acceleration of a particle as $a=\left(t^{2}+1\right)^{2}$, then the position s, (where c and c_{1} are constants), is
A. $\frac{1}{5} t^{5}+\frac{2}{3} t^{3}+t+c$
B. $\frac{1}{30} t^{6}+\frac{1}{6} t^{4}+\frac{1}{2} t^{2}+c t$
C. $\frac{1}{30} t^{6}+\frac{1}{6} t^{4}+\frac{1}{2} t^{2}+c t+c_{1}$
D. $\frac{1}{5} t^{5}+\frac{2}{3} t^{3}+t+c+c_{1}$
3. The antiderivative of $f(x)=\left(2 x^{2}-1\right)^{2} x$ is
A. $\left(2 x^{2}-1\right)^{3}+c$
B. $\left(\frac{2 x^{2}-1^{3}}{6}\right)$
C. $\left(2 x^{2}-1\right)^{3}$
D. $\frac{\left(2 x^{2}-1\right)^{3}}{12}+c$
4. The area of the region bonded by the graph $y=x^{2}+5$, the x-axis, and the lines defined by $x=-2$ and $x=0$ is
A. $7 \frac{1}{3}$
B. 13
C. $12 \frac{2}{3}$
D. 18
5. Find the area of the region bounded by the graphs of $y=2 x+4$ and $y=x^{2}+2 x$
A. $\frac{20}{3}$
B. $\frac{28}{3}$
C. $\frac{4}{3}$
D. $\frac{32}{3}$
6. The figure at the right shows a rectangle with two vertices at $(-a, 0)$ and $(a, 0)$ and the other two on the parabola $y=3 x^{2}$. What fraction of the area of the rectangle lies below the parabola?
A. $\frac{1}{6}$
B. $\frac{1}{3}$
C. $\frac{2}{3}$
D. $\frac{1}{2}$

7. The general solution of $\frac{d y}{d x}=\frac{x}{\sqrt{2 x^{2}+1}}$ is
A. $\frac{1}{2} \sqrt{2 x^{2}+1}+k$
B. $\frac{1}{6} \sqrt{\left(2 x^{2}+1\right)^{2}}+k$
C. $\frac{-1}{6 \sqrt{\left.2 x^{2}+1\right)^{3}}}+k$
D. $2 x \sqrt{2 x^{2}+1}+k$
8. The general solution of $\frac{d y}{d x}=\frac{3 x^{2}}{\left(x^{3}+1\right)^{3}}$ is
A. $\frac{1}{2\left(x^{3}+1\right)^{2}}+c$
B. $\frac{-1}{2\left(x^{3}+1\right)^{2}}+c$
C. $\frac{4 x^{3}}{\left(x^{3}+1\right)^{4}}+c$
D. $\frac{-4 x^{3}}{\left(x^{3}+1\right)^{4}}+c$
9. The area between the graph of $y=4 x, y=3 x$ and the line $x=-2$ is
A. 8
B. 6
C. 4
D. 2
10. The area in square units between the graph of $y=9-x^{2}$, the x-axis, and the lines $x=3$ and $x=-2$ is
A. $56 \frac{2}{3}$
B. $\quad 33 \frac{1}{3}$
C. 10
D. $\frac{8}{3}$
11. The velocity of an object in m / s is given by $v=(t+1)^{\frac{1}{2}}$. The position s in m at any time t in seconds if $s=l$ when $t=0$ is
A. $s=\frac{2}{3}(t+1)^{3 / 2}+\frac{1}{3}$
B. $s=\frac{1}{2}(t+1)^{-1 / 2}+\frac{1}{2}$
C. $s=\frac{3}{2}(t+1)^{3 / 2}-\frac{1}{2}$
D. $s=\frac{1}{2}(t+1)^{-1 / 2}-\frac{1}{2}$
12. The area in square units enclosed by the curves defined by $y=x^{2}-2 x$ and $y=x$ is
A. $\frac{4}{3}$
B. $\frac{43}{6}$
C. $\frac{11}{6}$
D. $\frac{9}{2}$
13. A golf ball is putted on a level green with an initial velocity of $20 \mathrm{dm} / \mathrm{s}$. Due to friction the velocity decreases at the rate of $8 \mathrm{dm} / \mathrm{s}^{2}$. The distance the ball travel in $d m$ is
A. 75
B. 45
C. 25
D. 15
14. The family of curves which has a slope given by $x^{\frac{1}{2}}+2$ is
A. $y=\frac{x^{\frac{-1}{2}}}{2}+2 x+c$
B. $y=x^{\frac{1}{2}}+c$
C. $y=\frac{x^{\frac{-1}{2}}}{2}+c$
D. $y=\frac{2 x^{\frac{3}{2}}}{3}+2 x+c$
15. The value of y, if $\frac{d y}{d x}=2 x^{3}(x+5)$, is
A. $\frac{x^{4}}{2}\left(\frac{x^{3}}{2}+5 x\right)+c$
C. $\frac{2}{5} x^{5}+\frac{5}{2} x^{4}+c$
B. $8 x^{3}+30 x^{2}+c$
D. none of these
16. The area in square units of the region bounded by the graph of $y=\frac{1}{x^{3}}$, the x-axis and the lines with equations $x=1$ and $x=3$ is
A. 240
B. $\frac{4}{9}$
C. $\frac{26}{27}$
D. 20
17. The formula for the position s in terms of time t, if $v=2-t^{-2}$ and $s=5$ when $t=1$ is
A. $s=2 t+t^{-1}$
B. $s=2 t+\frac{1}{t}+2$
C. $s=2 t^{-1}+5$
D. $s=2 t^{-3}+3$
18. The area in square units of the region enclosed by the graphs of $y=x^{2}$ and $y=x+6$ is
A. $\frac{35}{3}$
B. $\frac{215}{3}$
C. $\frac{125}{6}$
D. $\frac{265}{6}$
19. A truck rolls down a slope inclined 30° to the horizontal so that its constant acceleration due to gravity is $32 \sin 30^{\circ}$. If the truck starts to roll from rest its speed in dm/s when it has rolled 1000 dm is
A. $5 \sqrt{5}$
B. $80 \sqrt{5}$
C. $80 \sqrt{10}$
D. 120
20. The equation of the curve that has a slope given by $x^{2}-4 x+1$ and passes through the point $(0,3)$ is
A. $y=x^{3}-6 x^{2}+3 x+9$
B. $y=x^{3}-6 x^{2}+3 x+3$
C. $y=\frac{1}{3} x^{3}-2 x^{2}+x+1$
D. $y=\frac{1}{3} x^{3}-2 x^{2}+x+3$

ANSWER KEY:

Part A

1. A
2. B
3. B
4. C
5. C
6. D
7. C
8. B
9. \mathbf{A}
10. D
11. B
12. D
13. D
14. D
15. A
16. A
17. A
18. A
19. A
20. B

21 C 31. A \quad 41. $\quad \mathrm{D}$
22. D 32. D
23. C 33. B
24. A 34. B
25. B 35. A
26. D 36. C
27. B 37. C
28. B 38. D
29. B 39. C
30. B 40. A

Part B

1.	B	11.	A
2.	C	12.	D
3.	D	13.	C
4.	C	14.	D
5.	D	15.	C
6.	B	16.	B
7.	A	17.	B
8.	B	18.	C
9.	D	19.	B
10.	B	20.	D

