Math 31

Mock Review Exam A

Part A Multiple Choice

1. If $a \neq 0$, then $\lim _{x \rightarrow a} \frac{x^{2}-a^{2}}{x^{4}-a^{4}}$ is
A. $\frac{1}{a^{2}}$
B. $\frac{1}{2 a^{2}} *$
C. $\frac{1}{6 a^{2}}$
D. 0
2. $\lim _{x \rightarrow 0} \frac{|x|}{x}$ is
A. -1
B. 0
C. 1
D. nonexistent*
3. If $f(x)=\sqrt[5]{x}$, then $f^{\prime}(3)$ is
A. $\frac{1}{(5(3))^{5 / 4}}$
B. $\frac{1}{5(\sqrt[5]{27})}$
C. $\frac{\sqrt{3}}{5}$
D. $\frac{1}{5\left(\sqrt[5]{3^{4}}\right)} *$
4. If $f(x)=(x+1)^{3 / 2}-e^{x^{2}-9}$, then $f^{\prime}(3)$ is
A. -5
B. -3^{*}
C. 1
D. 3
5. If $s(x)=\sin ^{2} x$, then $s^{\prime \prime}(x)$ is
A. 2
B. $-2 \cos x \sin x$
C. $\quad 2 \sin x \cos x$
D. $2 \cos ^{2} x-2 \sin ^{2} x$ *
6. The equation of the tangent to the curve of $y=2 x^{2}+3 x-5$ at the point where $x=-1$ is
A. $y=4 x+3$
B. $y=-x-7$ *
C. $y=\frac{3}{4} x-\frac{27}{4}$
D. $y=2 x-2$
7. The slope of the curve $f(x)=3 x \sqrt{2 x^{2}+1}$ at the point $x=2$ is
A. 6
B. 17 *
C. 18
D. 27
8. If the velocity v, in metres per second, of an arrow fired from a bow is given by $v=\frac{300 s}{4-2 s}$, where s is the distance traveled by the arrow, then the acceleration in terms of the distance s is given by
A. $\frac{1200(1-s)}{(4-2 s)^{2}}$
B. $\frac{1200\left(4 s-4 s^{2}\right)}{(4-2 s)^{2}}$
C. $\frac{(300)^{2} 4 s}{(4-2 s)^{3}} *$
D. none of these
9. A cylindrical tank has a radius of $k \mathrm{~m}$. It is being filled at the rate of π cubic feet per minute. How fast is the surface rising in metres/minute?
A. πk

B $\quad \frac{\pi}{k^{2}}$
C. $\quad(\pi k)^{2}$
D. $\frac{1}{k^{2}} *$
10. A cube is expanding in such a way that its edge is changing at a rate of $5 \mathrm{~cm} / \mathrm{s}$. When its edge is 4 cm long, the rate of change of its volume in $\mathrm{cm}^{3} / \mathrm{s}$ is
A. 192
B. 375
C. 240^{*}
D. 48

11 If $f(x)=\frac{16-4 x}{(x+2)(x-3)(x-1)}$, then the asymptotes of $f(x)$ are
A. $x=-3, x=-1, x=2, y=0$
B. $\quad x=-2, x=1, x=3, y=0$ *
C. $\quad x=-2, x=1, x=3, y=4$
D. $x=-3, x=-1, x=2, y=4$

12 If $f(x)=8 x^{1 / 3}+x^{4 / 3}$, the interval for which the graph of f is concaved down is
A. $(2,4)$
B. $(0,4)$ *
C. $(-\infty, 0)$
D. $(-\infty, 2)$

13 The graph of the function f shown in the figure below has a vertical tangent at the point $(2,0)$ and horizontal tangents at $(1,-1)$ and $(3,1)$. For what values of $x,-2<x<4$, is f not differentiable?
A. 0 only
B. $\quad 0$ and 2 only *
C. 1 and 3 only
D. 0,1 and 3 only

14 The maximum area of a right triangle with hypotenuse 7 is
A. $\quad 10.25$
B. 12.25^{*}
C. $\quad 15.75$
D. 20.5

15 A rectangular field is to be enclosed by a fence and divided into two smaller plots by a fence parallel to one of the sides. The dimensions in metres of the largest such field if 1200 m of fence is available is
A. 150×350
B. 300×300
C. 200×600
D. 200×300 *
16. The product of two positive numbers is 16 . If the sum of one number and the square of the other is a minimum, then one of the numbers is
A. 2^{*}
B. 4
C. 6
D. 16
17. The area of the region bounded by the graph $y=x^{2}+5$, the x-axis, and the lines defined by $x=-2$ and $x=0$ is
A. $7 \frac{1}{3}$
B. 13
C. $12 \frac{2}{3}$ *
D. 18
18. The family of curves which has a slope given by $x^{\frac{1}{2}}+2$ is
A. $y=\frac{x^{\frac{-1}{2}}}{2}+2 x+c$
B. $y=x^{\frac{1}{2}}+c$
C. $y=\frac{x^{\frac{-1}{2}}}{2}+c$
D. $y=\frac{2 x^{\frac{3}{2}}}{3}+2 x+c$ *
19. $\int_{0}^{\pi / 4} \sin x d x-\int_{-\pi}^{\pi} \cos d x$
A. $\frac{1-\sqrt{2}}{2}$
B. $\frac{2-\sqrt{2}}{2} *$
C. $\frac{1+\sqrt{2}}{2}$
D. $\frac{2+\sqrt{2}}{2}$
20. $\int_{0}^{\pi / 6} \cos x\left(\sin ^{2} x+1\right) d x$
A. $\frac{13}{24} *$
B. $\frac{13 \sqrt{3}}{24}$
C. $\frac{-13}{24}$
D. $-\frac{13 \sqrt{3}}{24}$

Part B Fill in the blanks

1. The value of $\lim _{x \rightarrow 0} \frac{\cos x-1}{\sin x}$ is \qquad (0)
2. If $f(x)=\log _{3}\left(x^{2}-4\right)$, then $f^{\prime}(3)$, to the nearest hundredth, is \qquad
3. The point(s) of inflection where the function $e^{1-x^{2}}$ is concave down is(are)

$$
\cdots \cdot \quad\left(\pm \frac{1}{\sqrt{2}}, e^{1 / 2}\right)
$$

4. If $\left\{\begin{array}{l}f(x)=\frac{x^{2}-x}{2 x} \text { for } x \neq 0 \\ f(0)=k\end{array}\right.$
and if f is continuous at $x=0$, then k is \qquad
5. If $f(x)=x e^{-x}$, the point of inflection is \qquad

Part C Written Response

1. Find the derivative of the given function using the limit definition : $\frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

$$
f(x)=\frac{1}{x-2}
$$

$$
\left(f^{\prime}(x)=-\frac{1}{(x-2)^{2}}\right)
$$

2. Find the equation of the tangent line to the curve $y=\ln \left(x^{2}+1\right)$ when $x=3 \cdot\left(\frac{3}{5}\right)$
3. A cylindrical can holds $1000 \mathrm{~cm}^{3}$ of oil. Find the radius of the can with minimum surface area. $(5.4 \mathrm{~cm})$
4. A ball is thrown vertically upwards into the air. The height, \boldsymbol{h} meters, of the ball above the ground after t seconds is given by: $\quad h=20 t-5 t^{2}, t \geq 0$
a. find the initial height above the ground. (0)
b. at what time will the height be 15 meters $(t=1,3)$
c. when does the ball reach its maximum height? $(t=2)$
d. what is the maximum height of the ball? $(20 \mathrm{~m})$
e. how long is the object in the air? $(t=4)$
f. with what velocity does it hit the ground? $(-20 \mathrm{~m} / \mathrm{s})$
