Math 31
 Mock Review Exam B

Part A Multiple Choice

1. The value of the $\lim _{x \rightarrow \infty} \frac{x^{2}-4}{2+x-4 x^{2}}$ is
A. -2
B. $-\frac{1}{4} *$
C. $\frac{1}{2}$
D. 1
2. The value of the $\lim _{x \rightarrow 0} \frac{\sin 2 x}{2 x}$
A. -1
B. -2
C. 1^{*}
D. $\frac{1}{2}$
3. Given $h(x)\left\{\begin{array}{ll}x^{2}-1 & \text { if } x<0 \\ x-1 & \text { if } 0 \leq x \leq 3 \\ x^{3} & \text { if } x>3\end{array}\right.$, then h is discontinuous at
A. $x=0$
B. $\quad x=0$ and $x=3$
C. $x=3 *$
D. $x= \pm 1$
4. If $g(x)=x\left(2^{x}\right)$, then $g^{\prime}(x)$ is
A. $\quad 2^{x} \ln 2$
B. $2^{x}(x \ln x)$
C. $\quad 2^{x}(x \ln 2+1)$ *
D. $\quad 2^{x}(x \ln 2)$
5. If $y=\frac{1}{\sqrt{1+x}}$ then $\frac{d^{2} y}{d x^{2}}$ is
A. $\frac{-1}{4 \sqrt{(1+x)^{3}}}$
B. $\frac{3}{4 \sqrt{(1+x)^{5}}}$ *
C. $\frac{-1}{2 \sqrt{(1+x)^{3}}}$
D. $\frac{1}{4 \sqrt{(1+x)^{3}}}$
6. If $f(x)=\frac{e^{2 x}}{\sin x}$ then $f^{\prime}(x)$ is
A. $\frac{e^{2 x}(\cos x-2 \sin x)}{\sin ^{2} x}$
B. $\frac{e^{2 x}(2 \cos x-\sin x)}{\sin ^{2} x}$
C. $\frac{e^{2 x}(\sin x-2 \cos x)}{\sin ^{2} x}$
D. $\frac{e^{2 x}(2 \sin x-\cos x)}{\sin ^{2} x} *$
7. The derivative, $\frac{d y}{d x}$, of $y=\frac{(4 x-3)^{2}}{\sqrt{x}}$ is
A. $\frac{3(4 x-3)}{2 x \sqrt{x}}$
B. $\frac{3(4 x-1)(4 x+3)}{2 x^{3 / 2}}$
C. $\frac{3(4 x-3)(4 x+1)}{2 x^{3 / 2}} *$
D. $\frac{9(4 x-3)}{2 \sqrt{x}}$
8. The slope of $9 x-4 x \ln y=3$ at $\left(\frac{1}{3}, 1\right)$ is
A. $9-4 \ln 3$
B. $9+4 \ln 3$
C. 6
D. $\frac{27}{4} *$

9 The slope of the tangent line to the curve $y=\cos ^{2}(3 x)$ at the point $x=\frac{\pi}{4}$ is
A. -3
B. $1 / 2$
C. 2
D. 3^{*}
10. For the motion of a particle on a straight line is given by $s=t^{3}-6 t^{2}+12 t-8$, the distance s is increasing for
A. $t<2$
B. all t except $t=2 *$
C. $t>2$
D. $\quad 1<t<3$
11. For the motion of a particle on a straight line is given by $s=t^{4}-6 t^{3}+12 t^{2}+3$, the particle is at rest when t is equal to
A. 1 or 2
B. 0^{*}
C. $\frac{9}{4}$
D. 0,2 , or 3
12. The hypotenuse of a right isosceles triangle is increasing at 2 cm per minute. The rate of change ($\mathrm{cm}^{2} / \mathrm{min}$) of the area when the hypotenuse is 8 cm is
A. 8^{*}
B. 10
C. 12
D. 14
13. The equation of a slant asymptote of $y=\frac{-2 x^{2}+x+4}{-x+1}$ is
A. $y=2 x-1$
B. $y=2 x+1^{*}$
C. $y=x+4$
D. $y=x-1$
14. A local maximum value of $y=x^{3}+3+\frac{3}{x}$ is
A. 7
B. 3
C. -1^{*}
D. 1
15. The point of inflection for $y=2 x^{2}+\sin 2 x$ is
A. $\quad x=\frac{\pi}{4} *$
B. $x=-\frac{\pi}{4}$
C. $x=\frac{\pi}{3}$
D. $x=-\frac{\pi}{3}$
16. $\int \frac{\ln \sqrt{x}}{x} d x$
A. $\quad \frac{1}{4}(\ln x)^{2}+C$ *
B. $(\ln x)^{2}+C$
C. $\quad \frac{1}{2} \ln |\ln x|+C$
D. $\frac{(\ln \sqrt{x})^{2}}{2}+C$
17. The area in square units between the graph of $y=9-x^{2}$, the x-axis, and the lines $x=3$ and $x=-2$.
A. $56 \frac{2}{3}$
B. $\quad 33 \frac{1}{3}$ *
C. 10
D. $\frac{8}{3}$
18. The value of y, if $\frac{d y}{d x}=2 x^{3}(x+5)$, is
A. $\frac{x^{4}}{2}\left(\frac{x^{3}}{2}+5 x\right)+C$
B. $8 x^{3}+30 x^{2}+C$
C. $\frac{2}{5} x^{5}+\frac{5}{2} x^{4}+C^{*}$
D. nonexistent
19. The general solution of $\frac{d y}{d x}=\frac{3 x^{2}}{\left(x^{3}+1\right)^{3}}$ is
A. $\frac{1}{2\left(x^{3}+1\right)^{2}}+C$
B. $\frac{-1}{2\left(x^{3}+1\right)^{2}}+C$ *
C. $\frac{4 x^{3}}{\left(x^{3}+1\right)^{4}}+C$
D. $\frac{-4 x^{3}}{\left(x^{3}+1\right)^{4}}+C$
20. $\int x^{3}(x-\sqrt{x}+2) d x$
A. $4 x^{3}-\left(\frac{7}{2}\right) x^{5 / 2}+6 x^{2}+C$
B. $\frac{x^{4}}{4}\left(\frac{x^{2}}{2}-\frac{2}{3} x^{3 / 2}+2 x\right)+C$
C. $\frac{x^{5}}{5}-\frac{2}{9} x^{9 / 2}+\frac{x^{4}}{2}+C^{*}$
D. $3 x^{2}\left(1-\frac{1}{2 \sqrt{x}}\right)+C$

Part B Fill in the blanks

1. The derivative, $\frac{d}{d x}\left(e^{\ln \left(x^{3}+7 x^{2}+6\right)}\right)$ is \qquad
2. The value of $\ln 2+\ln 5-\ln 8-\ln 15$ is \qquad
3. Use the method of separation of variables to solve the differential equation $\frac{d y}{d x}=y \sqrt{x}$ $=\left(\ln |y|=\frac{2 x^{3 / 2}}{3}+C\right)$
4. The interval that the function $\frac{e^{x}}{x+1}$ is decreasing is \qquad $(-\infty, 0)$
5. The interval that the function $y=\sin ^{2} x-\frac{x}{2}$ for $0 \leq x \leq 2 \pi$ is increasing is \qquad $\left(\frac{\pi}{12}, \frac{5 \pi}{12}\right) \cup\left(\frac{13 \pi}{12}, \frac{17 \pi}{12}\right)$

Part C Written Response

1. Find the derivative of the given function using the limit definition : $\frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

$$
f(x)=\sqrt{x+1} \quad\left(f^{\prime}(x)=\frac{1}{2 \sqrt{x+1}}\right)
$$

2. A man 2 m tall walks away from a lamppost whose light is 5 m above the ground. If he walks at a speed of $1.5 \mathrm{~m} / \mathrm{s}$, at what rate is his shadow growing when he is 10 m from the lamppost? $(1 \mathrm{~m} / \mathrm{s})$
3. A toy tugboat is launched from the side of a pond and travels north at $5 \mathrm{~cm} / \mathrm{s}$. At the same moment, a toy yacht begins from a point 800 cm east of the tugboat and travels west at $7 \mathrm{~cm} / \mathrm{s}$. How closely do the two boats approach each other? $(465 \mathrm{~cm})$
4. A ball is tossed upward on the planet Marwayne, where acceleration due to gravity is $8 \mathrm{~m} / \mathrm{s}^{2}$. The ball is tossed from a height of 1.5 m at an initial velocity of $12 \mathrm{~m} / \mathrm{s}$. When will the ball land? (3.12 s)
